Logo Search packages:      
Sourcecode: wacom-tools version File versions

hid-core.c

/*
 *  USB HID support for Linux
 *
 *  Copyright (c) 1999 Andreas Gal
 *  Copyright (c) 2000-2001 Vojtech Pavlik <vojtech@suse.cz>
 */

/*
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the Free
 * Software Foundation; either version 2 of the License, or (at your option)
 * any later version.
 */

#include <linux/module.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/smp_lock.h>
#include <linux/spinlock.h>
#include <asm/unaligned.h>
#include <asm/byteorder.h>
#include <linux/input.h>

#undef DEBUG
#undef DEBUG_DATA

#include <linux/usb.h>

#include "hid.h"
#include <linux/hiddev.h>

/*
 * Version Information
 */

#define DRIVER_VERSION "v2.0-2.6.5-pc0.1"
#define DRIVER_AUTHOR "Andreas Gal, Vojtech Pavlik"
#define DRIVER_DESC "USB HID core driver"
#define DRIVER_LICENSE "GPL"

static char *hid_types[] = {"Device", "Pointer", "Mouse", "Device", "Joystick",
                        "Gamepad", "Keyboard", "Keypad", "Multi-Axis Controller"};

/*
 * Register a new report for a device.
 */

static struct hid_report *hid_register_report(struct hid_device *device, unsigned type, unsigned id)
{
      struct hid_report_enum *report_enum = device->report_enum + type;
      struct hid_report *report;

      if (report_enum->report_id_hash[id])
            return report_enum->report_id_hash[id];

      if (!(report = kmalloc(sizeof(struct hid_report), GFP_KERNEL)))
            return NULL;
      memset(report, 0, sizeof(struct hid_report));

      if (id != 0)
            report_enum->numbered = 1;

      report->id = id;
      report->type = type;
      report->size = 0;
      report->device = device;
      report_enum->report_id_hash[id] = report;

      list_add_tail(&report->list, &report_enum->report_list);

      return report;
}

/*
 * Register a new field for this report.
 */

static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages, unsigned values)
{
      struct hid_field *field;

      if (report->maxfield == HID_MAX_FIELDS) {
            dbg("too many fields in report");
            return NULL;
      }

      if (!(field = kmalloc(sizeof(struct hid_field) + usages * sizeof(struct hid_usage)
            + values * sizeof(unsigned), GFP_KERNEL))) return NULL;

      memset(field, 0, sizeof(struct hid_field) + usages * sizeof(struct hid_usage)
            + values * sizeof(unsigned));

      report->field[report->maxfield++] = field;
      field->usage = (struct hid_usage *)(field + 1);
      field->value = (unsigned *)(field->usage + usages);
      field->report = report;

      return field;
}

/*
 * Open a collection. The type/usage is pushed on the stack.
 */

static int open_collection(struct hid_parser *parser, unsigned type)
{
      struct hid_collection *collection;
      unsigned usage;

      usage = parser->local.usage[0];

      if (parser->collection_stack_ptr == HID_COLLECTION_STACK_SIZE) {
            dbg("collection stack overflow");
            return -1;
      }

      if (parser->device->maxcollection == parser->device->collection_size) {
            collection = kmalloc(sizeof(struct hid_collection) *
                             parser->device->collection_size * 2,
                             GFP_KERNEL);
            if (collection == NULL) {
                  dbg("failed to reallocate collection array");
                  return -1;
            }
            memcpy(collection, parser->device->collection,
                   sizeof(struct hid_collection) *
                   parser->device->collection_size);
            memset(collection + parser->device->collection_size, 0,
                   sizeof(struct hid_collection) *
                   parser->device->collection_size);
            kfree(parser->device->collection);
            parser->device->collection = collection;
            parser->device->collection_size *= 2;
      }

      parser->collection_stack[parser->collection_stack_ptr++] =
            parser->device->maxcollection;

      collection = parser->device->collection + 
            parser->device->maxcollection++;
      collection->type = type;
      collection->usage = usage;
      collection->level = parser->collection_stack_ptr - 1;
      
      if (type == HID_COLLECTION_APPLICATION)
            parser->device->maxapplication++;

      return 0;
}

/*
 * Close a collection.
 */

static int close_collection(struct hid_parser *parser)
{
      if (!parser->collection_stack_ptr) {
            dbg("collection stack underflow");
            return -1;
      }
      parser->collection_stack_ptr--;
      return 0;
}

/*
 * Climb up the stack, search for the specified collection type
 * and return the usage.
 */

static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
{
      int n;
      for (n = parser->collection_stack_ptr - 1; n >= 0; n--)
            if (parser->device->collection[parser->collection_stack[n]].type == type)
                  return parser->device->collection[parser->collection_stack[n]].usage;
      return 0; /* we know nothing about this usage type */
}

/*
 * Add a usage to the temporary parser table.
 */

static int hid_add_usage(struct hid_parser *parser, unsigned usage)
{
      if (parser->local.usage_index >= HID_MAX_USAGES) {
            dbg("usage index exceeded");
            return -1;
      }
      parser->local.usage[parser->local.usage_index] = usage;
      parser->local.collection_index[parser->local.usage_index] =
            parser->collection_stack_ptr ? 
            parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
      parser->local.usage_index++;
      return 0;
}

/*
 * Register a new field for this report.
 */

static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
{
      struct hid_report *report;
      struct hid_field *field;
      int usages;
      unsigned offset;
      int i;

      if (!(report = hid_register_report(parser->device, report_type, parser->global.report_id))) {
            dbg("hid_register_report failed");
            return -1;
      }

      if (parser->global.logical_maximum < parser->global.logical_minimum) {
            dbg("logical range invalid %d %d", parser->global.logical_minimum, parser->global.logical_maximum);
            return -1;
      }
      usages = parser->local.usage_index;

      offset = report->size;
      report->size += parser->global.report_size * parser->global.report_count;

      if (usages < parser->global.report_count)
            usages = parser->global.report_count;

      if (usages == 0)
            return 0; /* ignore padding fields */

      if ((field = hid_register_field(report, usages, parser->global.report_count)) == NULL)
            return 0;

      field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
      field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
      field->application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);

      for (i = 0; i < usages; i++) {
            int j = i;
            /* Duplicate the last usage we parsed if we have excess values */
            if (i >= parser->local.usage_index)
                  j = parser->local.usage_index - 1;
            field->usage[i].hid = parser->local.usage[j];
            field->usage[i].collection_index =
                  parser->local.collection_index[j];
      }

      field->maxusage = usages;
      field->flags = flags;
      field->report_offset = offset;
      field->report_type = report_type;
      field->report_size = parser->global.report_size;
      field->report_count = parser->global.report_count;
      field->logical_minimum = parser->global.logical_minimum;
      field->logical_maximum = parser->global.logical_maximum;
      field->physical_minimum = parser->global.physical_minimum;
      field->physical_maximum = parser->global.physical_maximum;
      field->unit_exponent = parser->global.unit_exponent;
      field->unit = parser->global.unit;

      return 0;
}

/*
 * Read data value from item.
 */

static __inline__ __u32 item_udata(struct hid_item *item)
{
      switch (item->size) {
            case 1: return item->data.u8;
            case 2: return item->data.u16;
            case 4: return item->data.u32;
      }
      return 0;
}

static __inline__ __s32 item_sdata(struct hid_item *item)
{
      switch (item->size) {
            case 1: return item->data.s8;
            case 2: return item->data.s16;
            case 4: return item->data.s32;
      }
      return 0;
}

/*
 * Process a global item.
 */

static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
{
      switch (item->tag) {

            case HID_GLOBAL_ITEM_TAG_PUSH:

                  if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
                        dbg("global enviroment stack overflow");
                        return -1;
                  }

                  memcpy(parser->global_stack + parser->global_stack_ptr++,
                        &parser->global, sizeof(struct hid_global));
                  return 0;

            case HID_GLOBAL_ITEM_TAG_POP:

                  if (!parser->global_stack_ptr) {
                        dbg("global enviroment stack underflow");
                        return -1;
                  }

                  memcpy(&parser->global, parser->global_stack + --parser->global_stack_ptr,
                        sizeof(struct hid_global));
                  return 0;

            case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
                  parser->global.usage_page = item_udata(item);
                  return 0;

            case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
                  parser->global.logical_minimum = item_sdata(item);
                  return 0;

            case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
                  if (parser->global.logical_minimum < 0)
                        parser->global.logical_maximum = item_sdata(item);
                  else
                        parser->global.logical_maximum = item_udata(item);
                  return 0;

            case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
                  parser->global.physical_minimum = item_sdata(item);
                  return 0;

            case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
                  if (parser->global.physical_minimum < 0)
                        parser->global.physical_maximum = item_sdata(item);
                  else
                        parser->global.physical_maximum = item_udata(item);
                  return 0;

            case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
                  parser->global.unit_exponent = item_sdata(item);
                  return 0;

            case HID_GLOBAL_ITEM_TAG_UNIT:
                  parser->global.unit = item_udata(item);
                  return 0;

            case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
                  if ((parser->global.report_size = item_udata(item)) > 32) {
                        dbg("invalid report_size %d", parser->global.report_size);
                        return -1;
                  }
                  return 0;

            case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
                  if ((parser->global.report_count = item_udata(item)) > HID_MAX_USAGES) {
                        dbg("invalid report_count %d", parser->global.report_count);
                        return -1;
                  }
                  return 0;

            case HID_GLOBAL_ITEM_TAG_REPORT_ID:
                  if ((parser->global.report_id = item_udata(item)) == 0) {
                        dbg("report_id 0 is invalid");
                        return -1;
                  }
                  return 0;

            default:
                  dbg("unknown global tag 0x%x", item->tag);
                  return -1;
      }
}

/*
 * Process a local item.
 */

static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
{
      __u32 data;
      unsigned n;

      if (item->size == 0) {
            dbg("item data expected for local item");
            return -1;
      }

      data = item_udata(item);

      switch (item->tag) {

            case HID_LOCAL_ITEM_TAG_DELIMITER:

                  if (data) {
                        /*
                         * We treat items before the first delimiter
                         * as global to all usage sets (branch 0).
                         * In the moment we process only these global
                         * items and the first delimiter set.
                         */
                        if (parser->local.delimiter_depth != 0) {
                              dbg("nested delimiters");
                              return -1;
                        }
                        parser->local.delimiter_depth++;
                        parser->local.delimiter_branch++;
                  } else {
                        if (parser->local.delimiter_depth < 1) {
                              dbg("bogus close delimiter");
                              return -1;
                        }
                        parser->local.delimiter_depth--;
                  }
                  return 1;

            case HID_LOCAL_ITEM_TAG_USAGE:

                  if (parser->local.delimiter_branch > 1) {
                        dbg("alternative usage ignored");
                        return 0;
                  }

                  if (item->size <= 2)
                        data = (parser->global.usage_page << 16) + data;

                  return hid_add_usage(parser, data);

            case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:

                  if (parser->local.delimiter_branch > 1) {
                        dbg("alternative usage ignored");
                        return 0;
                  }

                  if (item->size <= 2)
                        data = (parser->global.usage_page << 16) + data;

                  parser->local.usage_minimum = data;
                  return 0;

            case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:

                  if (parser->local.delimiter_branch > 1) {
                        dbg("alternative usage ignored");
                        return 0;
                  }

                  if (item->size <= 2)
                        data = (parser->global.usage_page << 16) + data;

                  for (n = parser->local.usage_minimum; n <= data; n++)
                        if (hid_add_usage(parser, n)) {
                              dbg("hid_add_usage failed\n");
                              return -1;
                        }
                  return 0;

            default:

                  dbg("unknown local item tag 0x%x", item->tag);
                  return 0;
      }
      return 0;
}

/*
 * Process a main item.
 */

static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
{
      __u32 data;
      int ret;

      data = item_udata(item);

      switch (item->tag) {
            case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
                  ret = open_collection(parser, data & 0xff);
                  break;
            case HID_MAIN_ITEM_TAG_END_COLLECTION:
                  ret = close_collection(parser);
                  break;
            case HID_MAIN_ITEM_TAG_INPUT:
                  ret = hid_add_field(parser, HID_INPUT_REPORT, data);
                  break;
            case HID_MAIN_ITEM_TAG_OUTPUT:
                  ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
                  break;
            case HID_MAIN_ITEM_TAG_FEATURE:
                  ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
                  break;
            default:
                  dbg("unknown main item tag 0x%x", item->tag);
                  ret = 0;
      }

      memset(&parser->local, 0, sizeof(parser->local));     /* Reset the local parser environment */

      return ret;
}

/*
 * Process a reserved item.
 */

static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
{
      dbg("reserved item type, tag 0x%x", item->tag);
      return 0;
}

/*
 * Free a report and all registered fields. The field->usage and
 * field->value table's are allocated behind the field, so we need
 * only to free(field) itself.
 */

static void hid_free_report(struct hid_report *report)
{
      unsigned n;

      for (n = 0; n < report->maxfield; n++)
            kfree(report->field[n]);
      kfree(report);
}

/*
 * Free a device structure, all reports, and all fields.
 */

static void hid_free_device(struct hid_device *device)
{
      unsigned i,j;

      hid_ff_exit(device);

      for (i = 0; i < HID_REPORT_TYPES; i++) {
            struct hid_report_enum *report_enum = device->report_enum + i;

            for (j = 0; j < 256; j++) {
                  struct hid_report *report = report_enum->report_id_hash[j];
                  if (report)
                        hid_free_report(report);
            }
      }

      if (device->rdesc)
            kfree(device->rdesc);
      kfree(device);
}

/*
 * Fetch a report description item from the data stream. We support long
 * items, though they are not used yet.
 */

static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
{
      u8 b;

      if ((end - start) <= 0)
            return NULL;

      b = *start++;

      item->type = (b >> 2) & 3;
      item->tag  = (b >> 4) & 15;

      if (item->tag == HID_ITEM_TAG_LONG) {

            item->format = HID_ITEM_FORMAT_LONG;

            if ((end - start) < 2)
                  return NULL;

            item->size = *start++;
            item->tag  = *start++;

            if ((end - start) < item->size) 
                  return NULL;

            item->data.longdata = start;
            start += item->size;
            return start;
      } 

      item->format = HID_ITEM_FORMAT_SHORT;
      item->size = b & 3;

      switch (item->size) {

            case 0:
                  return start;

            case 1:
                  if ((end - start) < 1)
                        return NULL;
                  item->data.u8 = *start++;
                  return start;

            case 2:
                  if ((end - start) < 2) 
                        return NULL;
                  item->data.u16 = le16_to_cpu(get_unaligned((__u16*)start));
                  start = (__u8 *)((__u16 *)start + 1);
                  return start;

            case 3:
                  item->size++;
                  if ((end - start) < 4)
                        return NULL;
                  item->data.u32 = le32_to_cpu(get_unaligned((__u32*)start));
                  start = (__u8 *)((__u32 *)start + 1);
                  return start;
      }

      return NULL;
}

/*
 * Parse a report description into a hid_device structure. Reports are
 * enumerated, fields are attached to these reports.
 */

static struct hid_device *hid_parse_report(__u8 *start, unsigned size)
{
      struct hid_device *device;
      struct hid_parser *parser;
      struct hid_item item;
      __u8 *end;
      unsigned i;
      static int (*dispatch_type[])(struct hid_parser *parser,
                              struct hid_item *item) = {
            hid_parser_main,
            hid_parser_global,
            hid_parser_local,
            hid_parser_reserved
      };

      if (!(device = kmalloc(sizeof(struct hid_device), GFP_KERNEL)))
            return NULL;
      memset(device, 0, sizeof(struct hid_device));

      if (!(device->collection =kmalloc(sizeof(struct hid_collection) *
                           HID_DEFAULT_NUM_COLLECTIONS, GFP_KERNEL))) {
            kfree(device);
            return NULL;
      }
      memset(device->collection, 0, sizeof(struct hid_collection) *
             HID_DEFAULT_NUM_COLLECTIONS);
      device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;

      for (i = 0; i < HID_REPORT_TYPES; i++)
            INIT_LIST_HEAD(&device->report_enum[i].report_list);

      if (!(device->rdesc = (__u8 *)kmalloc(size, GFP_KERNEL))) {
            kfree(device->collection);
            kfree(device);
            return NULL;
      }
      memcpy(device->rdesc, start, size);
      device->rsize = size;

      if (!(parser = kmalloc(sizeof(struct hid_parser), GFP_KERNEL))) {
            kfree(device->rdesc);
            kfree(device->collection);
            kfree(device);
            return NULL;
      }
      memset(parser, 0, sizeof(struct hid_parser));
      parser->device = device;

      end = start + size;
      while ((start = fetch_item(start, end, &item)) != 0) {

            if (item.format != HID_ITEM_FORMAT_SHORT) {
                  dbg("unexpected long global item");
                  kfree(device->collection);
                  hid_free_device(device);
                  kfree(parser);
                  return NULL;
            }

            if (dispatch_type[item.type](parser, &item)) {
                  dbg("item %u %u %u %u parsing failed\n",
                        item.format, (unsigned)item.size, (unsigned)item.type, (unsigned)item.tag);
                  kfree(device->collection);
                  hid_free_device(device);
                  kfree(parser);
                  return NULL;
            }

            if (start == end) {
                  if (parser->collection_stack_ptr) {
                        dbg("unbalanced collection at end of report description");
                        kfree(device->collection);
                        hid_free_device(device);
                        kfree(parser);
                        return NULL;
                  }
                  if (parser->local.delimiter_depth) {
                        dbg("unbalanced delimiter at end of report description");
                        kfree(device->collection);
                        hid_free_device(device);
                        kfree(parser);
                        return NULL;
                  }
                  kfree(parser);
                  return device;
            }
      }

      dbg("item fetching failed at offset %d\n", (int)(end - start));
      kfree(device->collection);
      hid_free_device(device);
      kfree(parser);
      return NULL;
}

/*
 * Convert a signed n-bit integer to signed 32-bit integer. Common
 * cases are done through the compiler, the screwed things has to be
 * done by hand.
 */

static __inline__ __s32 snto32(__u32 value, unsigned n)
{
      switch (n) {
            case 8:  return ((__s8)value);
            case 16: return ((__s16)value);
            case 32: return ((__s32)value);
      }
      return value & (1 << (n - 1)) ? value | (-1 << n) : value;
}

/*
 * Convert a signed 32-bit integer to a signed n-bit integer.
 */

static __inline__ __u32 s32ton(__s32 value, unsigned n)
{
      __s32 a = value >> (n - 1);
      if (a && a != -1)
            return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
      return value & ((1 << n) - 1);
}

/*
 * Extract/implement a data field from/to a report.
 */

static __inline__ __u32 extract(__u8 *report, unsigned offset, unsigned n)
{
      report += (offset >> 5) << 2; offset &= 31;
      return (le64_to_cpu(get_unaligned((__u64*)report)) >> offset) & ((1 << n) - 1);
}

static __inline__ void implement(__u8 *report, unsigned offset, unsigned n, __u32 value)
{
      report += (offset >> 5) << 2; offset &= 31;
      put_unaligned((get_unaligned((__u64*)report)
            & cpu_to_le64(~((((__u64) 1 << n) - 1) << offset)))
            | cpu_to_le64((__u64)value << offset), (__u64*)report);
}

/*
 * Search an array for a value.
 */

static __inline__ int search(__s32 *array, __s32 value, unsigned n)
{
      while (n--) {
            if (*array++ == value)
                  return 0;
      }
      return -1;
}

static void hid_process_event(struct hid_device *hid, struct hid_field *field, struct hid_usage *usage, __s32 value, struct pt_regs *regs)
{
      hid_dump_input(usage, value);
      if (hid->claimed & HID_CLAIMED_INPUT)
            hidinput_hid_event(hid, field, usage, value, regs);
      if (hid->claimed & HID_CLAIMED_HIDDEV)
            hiddev_hid_event(hid, field, usage, value, regs);
}

/*
 * Analyse a received field, and fetch the data from it. The field
 * content is stored for next report processing (we do differential
 * reporting to the layer).
 */

static void hid_input_field(struct hid_device *hid, struct hid_field *field, __u8 *data, struct pt_regs *regs)
{
      unsigned n;
      unsigned count = field->report_count;
      unsigned offset = field->report_offset;
      unsigned size = field->report_size;
      __s32 min = field->logical_minimum;
      __s32 max = field->logical_maximum;
      __s32 value[count]; /* WARNING: gcc specific */

      for (n = 0; n < count; n++) {

                  value[n] = min < 0 ? snto32(extract(data, offset + n * size, size), size) :
                                        extract(data, offset + n * size, size);

                  if (!(field->flags & HID_MAIN_ITEM_VARIABLE) /* Ignore report if ErrorRollOver */
                      && value[n] >= min && value[n] <= max
                      && field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1)
                        return;
      }

      for (n = 0; n < count; n++) {

            if (HID_MAIN_ITEM_VARIABLE & field->flags) {

                  if (field->flags & HID_MAIN_ITEM_RELATIVE) {
                        if (!value[n])
                              continue;
                  } else {
                        if (value[n] == field->value[n])
                              continue;
                  }     
                  hid_process_event(hid, field, &field->usage[n], value[n], regs);
                  continue;
            }

            if (field->value[n] >= min && field->value[n] <= max
                  && field->usage[field->value[n] - min].hid
                  && search(value, field->value[n], count))
                        hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, regs);

            if (value[n] >= min && value[n] <= max
                  && field->usage[value[n] - min].hid
                  && search(field->value, value[n], count))
                        hid_process_event(hid, field, &field->usage[value[n] - min], 1, regs);
      }

      memcpy(field->value, value, count * sizeof(__s32));
}

static int hid_input_report(int type, struct urb *urb, struct pt_regs *regs)
{
      struct hid_device *hid = urb->context;
      struct hid_report_enum *report_enum = hid->report_enum + type;
      u8 *data = urb->transfer_buffer;
      int len = urb->actual_length;
      struct hid_report *report;
      int n, size;

      if (!len) {
            dbg("empty report");
            return -1;
      }

#ifdef DEBUG_DATA
      printk(KERN_DEBUG __FILE__ ": report (size %u) (%snumbered)\n", len, report_enum->numbered ? "" : "un");
#endif

      n = 0;                        /* Normally report number is 0 */
      if (report_enum->numbered) {  /* Device uses numbered reports, data[0] is report number */
            n = *data++;
            len--;
      }

#ifdef DEBUG_DATA
      {
            int i;
            printk(KERN_DEBUG __FILE__ ": report %d (size %u) = ", n, len);
            for (i = 0; i < len; i++)
                  printk(" %02x", data[i]);
            printk("\n");
      }
#endif

      if (!(report = report_enum->report_id_hash[n])) {
            dbg("undefined report_id %d received", n);
            return -1;
      }

      size = ((report->size - 1) >> 3) + 1;

      if (len < size) {
            dbg("report %d is too short, (%d < %d)", report->id, len, size);
            return -1;
      }

      if (hid->claimed & HID_CLAIMED_HIDDEV)
            hiddev_report_event(hid, report);

      for (n = 0; n < report->maxfield; n++)
            hid_input_field(hid, report->field[n], data, regs);

      if (hid->claimed & HID_CLAIMED_INPUT)
            hidinput_report_event(hid, report);

      return 0;
}

/*
 * Input interrupt completion handler.
 */

static void hid_irq_in(struct urb *urb, struct pt_regs *regs)
{
      struct hid_device *hid = urb->context;
      int               status;

      switch (urb->status) {
      case 0:                 /* success */
            hid_input_report(HID_INPUT_REPORT, urb, regs);
            break;
      case -ECONNRESET: /* unlink */
      case -ENOENT:
      case -ESHUTDOWN:
            return;
      default:          /* error */
            dbg("nonzero status in input irq %d", urb->status);
      }
      
      status = usb_submit_urb (urb, SLAB_ATOMIC);
      if (status)
            err ("can't resubmit intr, %s-%s/input%d, status %d",
                        hid->dev->bus->bus_name, hid->dev->devpath,
                        hid->ifnum, status);
}

/*
 * Output the field into the report.
 */

static void hid_output_field(struct hid_field *field, __u8 *data)
{
      unsigned count = field->report_count;
      unsigned offset = field->report_offset;
      unsigned size = field->report_size;
      unsigned n;

      for (n = 0; n < count; n++) {
            if (field->logical_minimum < 0)     /* signed values */
                  implement(data, offset + n * size, size, s32ton(field->value[n], size));
             else                   /* unsigned values */
                  implement(data, offset + n * size, size, field->value[n]);
      }
}

/*
 * Create a report.
 */

void hid_output_report(struct hid_report *report, __u8 *data)
{
      unsigned n;

      if (report->id > 0)
            *data++ = report->id;

      for (n = 0; n < report->maxfield; n++)
            hid_output_field(report->field[n], data);
}

/*
 * Set a field value. The report this field belongs to has to be
 * created and transferred to the device, to set this value in the
 * device.
 */

int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
{
      unsigned size = field->report_size;

      hid_dump_input(field->usage + offset, value);

      if (offset >= field->report_count) {
            dbg("offset (%d) exceeds report_count (%d)", offset, field->report_count);
            hid_dump_field(field, 8);
            return -1;
      }
      if (field->logical_minimum < 0) {
            if (value != snto32(s32ton(value, size), size)) {
                  dbg("value %d is out of range", value);
                  return -1;
            }
      }
      field->value[offset] = value;
      return 0;
}

int hid_find_field(struct hid_device *hid, unsigned int type, unsigned int code, struct hid_field **field)
{
      struct hid_report_enum *report_enum = hid->report_enum + HID_OUTPUT_REPORT;
      struct list_head *list = report_enum->report_list.next;
      int i, j;

      while (list != &report_enum->report_list) {
            struct hid_report *report = (struct hid_report *) list;
            list = list->next;
            for (i = 0; i < report->maxfield; i++) {
                  *field = report->field[i];
                  for (j = 0; j < (*field)->maxusage; j++)
                        if ((*field)->usage[j].type == type && (*field)->usage[j].code == code)
                              return j;
            }
      }
      return -1;
}

/*
 * Find a report with a specified HID usage.
 */

int hid_find_report_by_usage(struct hid_device *hid, __u32 wanted_usage, struct hid_report **report, int type)
{
      struct hid_report_enum *report_enum = hid->report_enum + type;
      struct list_head *list = report_enum->report_list.next;
      int i, j;

      while (list != &report_enum->report_list) {
            *report = (struct hid_report *) list;
            list = list->next;
            for (i = 0; i < (*report)->maxfield; i++) {
                  struct hid_field *field = (*report)->field[i];
                  for (j = 0; j < field->maxusage; j++)
                        if (field->logical == wanted_usage)
                              return j;
            }
      }
      return -1;
}

int hid_find_field_in_report(struct hid_report *report, __u32 wanted_usage, struct hid_field **field)
{
      int i, j;

      for (i = 0; i < report->maxfield; i++) {
            *field = report->field[i];
            for (j = 0; j < (*field)->maxusage; j++)
                  if ((*field)->usage[j].hid == wanted_usage)
                        return j;
      }

      return -1;
}

static int hid_submit_out(struct hid_device *hid)
{
      struct hid_report *report;

      report = hid->out[hid->outtail];

      hid_output_report(report, hid->outbuf);
      hid->urbout->transfer_buffer_length = ((report->size - 1) >> 3) + 1 + (report->id > 0);
      hid->urbout->dev = hid->dev;

      dbg("submitting out urb");

      if (usb_submit_urb(hid->urbout, GFP_ATOMIC)) {
            err("usb_submit_urb(out) failed");
            return -1;
      }

      return 0;
}

static int hid_submit_ctrl(struct hid_device *hid)
{
      struct hid_report *report;
      unsigned char dir;
      int len;

      report = hid->ctrl[hid->ctrltail].report;
      dir = hid->ctrl[hid->ctrltail].dir;

      len = ((report->size - 1) >> 3) + 1 + (report->id > 0);
      if (dir == USB_DIR_OUT) {
            hid_output_report(report, hid->ctrlbuf);
            hid->urbctrl->pipe = usb_sndctrlpipe(hid->dev, 0);
            hid->urbctrl->transfer_buffer_length = len;
      } else {
            int maxpacket, padlen;

            hid->urbctrl->pipe = usb_rcvctrlpipe(hid->dev, 0);
            maxpacket = usb_maxpacket(hid->dev, hid->urbctrl->pipe, 0);
            if (maxpacket > 0) {
                  padlen = (len + maxpacket - 1) / maxpacket;
                  padlen *= maxpacket;
                  if (padlen > HID_BUFFER_SIZE)
                        padlen = HID_BUFFER_SIZE;
            } else
                  padlen = 0;
            hid->urbctrl->transfer_buffer_length = padlen;
      }
      hid->urbctrl->dev = hid->dev;

      hid->cr->bRequestType = USB_TYPE_CLASS | USB_RECIP_INTERFACE | dir;
      hid->cr->bRequest = (dir == USB_DIR_OUT) ? HID_REQ_SET_REPORT : HID_REQ_GET_REPORT;
      hid->cr->wValue = cpu_to_le16(((report->type + 1) << 8) | report->id);
      hid->cr->wIndex = cpu_to_le16(hid->ifnum);
      hid->cr->wLength = cpu_to_le16(len);

      dbg("submitting ctrl urb: %s wValue=0x%04x wIndex=0x%04x wLength=%u",
          hid->cr->bRequest == HID_REQ_SET_REPORT ? "Set_Report" : "Get_Report",
          hid->cr->wValue, hid->cr->wIndex, hid->cr->wLength);

      if (usb_submit_urb(hid->urbctrl, GFP_ATOMIC)) {
            err("usb_submit_urb(ctrl) failed");
            return -1;
      }

      return 0;
}

/*
 * Output interrupt completion handler.
 */

static void hid_irq_out(struct urb *urb, struct pt_regs *regs)
{
      struct hid_device *hid = urb->context;
      unsigned long flags;

      if (urb->status)
            warn("output irq status %d received", urb->status);

      spin_lock_irqsave(&hid->outlock, flags);

      hid->outtail = (hid->outtail + 1) & (HID_OUTPUT_FIFO_SIZE - 1);

      if (hid->outhead != hid->outtail) {
            hid_submit_out(hid);
            spin_unlock_irqrestore(&hid->outlock, flags);
            return;
      }

      clear_bit(HID_OUT_RUNNING, &hid->iofl);

      spin_unlock_irqrestore(&hid->outlock, flags);

      wake_up(&hid->wait);
}

/*
 * Control pipe completion handler.
 */

static void hid_ctrl(struct urb *urb, struct pt_regs *regs)
{
      struct hid_device *hid = urb->context;
      unsigned long flags;

      if (urb->status)
            warn("ctrl urb status %d received", urb->status);

      spin_lock_irqsave(&hid->ctrllock, flags);

      if (hid->ctrl[hid->ctrltail].dir == USB_DIR_IN) 
            hid_input_report(hid->ctrl[hid->ctrltail].report->type, urb, regs);

      hid->ctrltail = (hid->ctrltail + 1) & (HID_CONTROL_FIFO_SIZE - 1);

      if (hid->ctrlhead != hid->ctrltail) {
            hid_submit_ctrl(hid);
            spin_unlock_irqrestore(&hid->ctrllock, flags);
            return;
      }

      clear_bit(HID_CTRL_RUNNING, &hid->iofl);

      spin_unlock_irqrestore(&hid->ctrllock, flags);

      wake_up(&hid->wait);
}

void hid_submit_report(struct hid_device *hid, struct hid_report *report, unsigned char dir)
{
      int head;
      unsigned long flags;

      if ((hid->quirks & HID_QUIRK_NOGET) && dir == USB_DIR_IN)
            return;

      if (hid->urbout && dir == USB_DIR_OUT && report->type == HID_OUTPUT_REPORT) {

            spin_lock_irqsave(&hid->outlock, flags);

            if ((head = (hid->outhead + 1) & (HID_OUTPUT_FIFO_SIZE - 1)) == hid->outtail) {
                  spin_unlock_irqrestore(&hid->outlock, flags);
                  warn("output queue full");
                  return;
            }

            hid->out[hid->outhead] = report;
            hid->outhead = head;

            if (!test_and_set_bit(HID_OUT_RUNNING, &hid->iofl))
                  hid_submit_out(hid);

            spin_unlock_irqrestore(&hid->outlock, flags);
            return;
      }

      spin_lock_irqsave(&hid->ctrllock, flags);

      if ((head = (hid->ctrlhead + 1) & (HID_CONTROL_FIFO_SIZE - 1)) == hid->ctrltail) {
            spin_unlock_irqrestore(&hid->ctrllock, flags);
            warn("control queue full");
            return;
      }

      hid->ctrl[hid->ctrlhead].report = report;
      hid->ctrl[hid->ctrlhead].dir = dir;
      hid->ctrlhead = head;

      if (!test_and_set_bit(HID_CTRL_RUNNING, &hid->iofl))
            hid_submit_ctrl(hid);

      spin_unlock_irqrestore(&hid->ctrllock, flags);
}

int hid_wait_io(struct hid_device *hid)
{
      DECLARE_WAITQUEUE(wait, current);
      int timeout = 10*HZ;

      set_current_state(TASK_UNINTERRUPTIBLE);
      add_wait_queue(&hid->wait, &wait);

      while (timeout && (test_bit(HID_CTRL_RUNNING, &hid->iofl) ||
                     test_bit(HID_OUT_RUNNING, &hid->iofl)))
            timeout = schedule_timeout(timeout);

      set_current_state(TASK_RUNNING);
      remove_wait_queue(&hid->wait, &wait);

      if (!timeout) {
            dbg("timeout waiting for ctrl or out queue to clear");
            return -1;
      }

      return 0;
}

static int hid_get_class_descriptor(struct usb_device *dev, int ifnum,
            unsigned char type, void *buf, int size)
{
      return usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
            USB_REQ_GET_DESCRIPTOR, USB_RECIP_INTERFACE | USB_DIR_IN,
            (type << 8), ifnum, buf, size, HZ * USB_CTRL_GET_TIMEOUT);
}

int hid_open(struct hid_device *hid)
{
      if (hid->open++)
            return 0;

      hid->urbin->dev = hid->dev;

      if (usb_submit_urb(hid->urbin, GFP_KERNEL))
            return -EIO;

      return 0;
}

void hid_close(struct hid_device *hid)
{
      if (!--hid->open)
            usb_unlink_urb(hid->urbin);
}

/*
 * Initialize all reports
 */

void hid_init_reports(struct hid_device *hid)
{
      struct hid_report_enum *report_enum;
      struct hid_report *report;
      struct list_head *list;
      int err, ret;

      /*
       * The Set_Idle request is supposed to affect only the
       * "Interrupt In" pipe. Unfortunately, buggy devices such as
       * the BTC keyboard (ID 046e:5303) the request also affects
       * Get_Report requests on the control pipe.  In the worst
       * case, if the device was put on idle for an indefinite
       * amount of time (as we do below) and there are no input
       * events to report, the Get_Report requests will just hang
       * until we get a USB timeout.  To avoid this, we temporarily
       * establish a minimal idle time of 1ms.  This shouldn't hurt
       * bugfree devices and will cause a worst-case extra delay of
       * 1ms for buggy ones.
       */
      usb_control_msg(hid->dev, usb_sndctrlpipe(hid->dev, 0),
                  HID_REQ_SET_IDLE, USB_TYPE_CLASS | USB_RECIP_INTERFACE, (1 << 8),
                  hid->ifnum, NULL, 0, HZ * USB_CTRL_SET_TIMEOUT);

      report_enum = hid->report_enum + HID_INPUT_REPORT;
      list = report_enum->report_list.next;
      while (list != &report_enum->report_list) {
            report = (struct hid_report *) list;
            hid_submit_report(hid, report, USB_DIR_IN);
            list = list->next;
      }

      report_enum = hid->report_enum + HID_FEATURE_REPORT;
      list = report_enum->report_list.next;
      while (list != &report_enum->report_list) {
            report = (struct hid_report *) list;
            hid_submit_report(hid, report, USB_DIR_IN);
            list = list->next;
      }

      err = 0;
      while ((ret = hid_wait_io(hid))) {
            err |= ret;
            if (test_bit(HID_CTRL_RUNNING, &hid->iofl))
                  usb_unlink_urb(hid->urbctrl);
            if (test_bit(HID_OUT_RUNNING, &hid->iofl))
                  usb_unlink_urb(hid->urbout);
      }

      if (err)
            warn("timeout initializing reports\n");

      report_enum = hid->report_enum + HID_INPUT_REPORT;
      list = report_enum->report_list.next;
      while (list != &report_enum->report_list) {
            report = (struct hid_report *) list;
            usb_control_msg(hid->dev, usb_sndctrlpipe(hid->dev, 0),
                  HID_REQ_SET_IDLE, USB_TYPE_CLASS | USB_RECIP_INTERFACE, report->id,
                  hid->ifnum, NULL, 0, HZ * USB_CTRL_SET_TIMEOUT);
            list = list->next;
      }
}

#define USB_VENDOR_ID_WACOM         0x056a
#define USB_DEVICE_ID_WACOM_PENPARTNER    0x0000
#define USB_DEVICE_ID_WACOM_GRAPHIRE      0x0010
#define USB_DEVICE_ID_WACOM_INTUOS  0x0020
#define USB_DEVICE_ID_WACOM_PL            0x0030
#define USB_DEVICE_ID_WACOM_INTUOS2 0x0040
#define USB_DEVICE_ID_WACOM_VOLITO      0x0060
#define USB_DEVICE_ID_WACOM_PTU         0x0003
#define USB_DEVICE_ID_WACOM_INTUOS3     0x00B0

#define USB_VENDOR_ID_KBGEAR            0x084e
#define USB_DEVICE_ID_KBGEAR_JAMSTUDIO  0x1001

#define USB_VENDOR_ID_AIPTEK        0x08ca
#define USB_DEVICE_ID_AIPTEK_6000   0x0020

#define USB_VENDOR_ID_GRIFFIN       0x077d
#define USB_DEVICE_ID_POWERMATE           0x0410
#define USB_DEVICE_ID_SOUNDKNOB           0x04AA

#define USB_VENDOR_ID_ATEN             0x0557  
#define USB_DEVICE_ID_ATEN_UC100KM     0x2004
#define USB_DEVICE_ID_ATEN_CS124U      0x2202
#define USB_DEVICE_ID_ATEN_2PORTKVM    0x2204
#define USB_DEVICE_ID_ATEN_4PORTKVM    0x2205
#define USB_DEVICE_ID_ATEN_4PORTKVMC   0x2208

#define USB_VENDOR_ID_TOPMAX           0x0663
#define USB_DEVICE_ID_TOPMAX_COBRAPAD  0x0103

#define USB_VENDOR_ID_HAPP             0x078b
#define USB_DEVICE_ID_UGCI_DRIVING     0x0010
#define USB_DEVICE_ID_UGCI_FLYING      0x0020
#define USB_DEVICE_ID_UGCI_FIGHTING    0x0030

#define USB_VENDOR_ID_MGE              0x0463
#define USB_DEVICE_ID_MGE_UPS          0xffff
#define USB_DEVICE_ID_MGE_UPS1         0x0001

#define USB_VENDOR_ID_ONTRAK        0x0a07
#define USB_DEVICE_ID_ONTRAK_ADU100 0x0064

#define USB_VENDOR_ID_TANGTOP          0x0d3d
#define USB_DEVICE_ID_TANGTOP_USBPS2   0x0001

#define USB_VENDOR_ID_ESSENTIAL_REALITY   0x0d7f
#define USB_DEVICE_ID_ESSENTIAL_REALITY_P5      0x0100

#define USB_VENDOR_ID_A4TECH        0x09DA
#define USB_DEVICE_ID_A4TECH_WCP32PU      0x0006

#define USB_VENDOR_ID_CYPRESS       0x04b4
#define USB_DEVICE_ID_CYPRESS_MOUSE 0x0001

#define USB_VENDOR_ID_BERKSHIRE           0x0c98
#define USB_DEVICE_ID_BERKSHIRE_PCWD      0x1140

#define USB_VENDOR_ID_ALPS          0x0433
#define USB_DEVICE_ID_IBM_GAMEPAD   0x1101

#define USB_VENDOR_ID_SAITEK        0x06a3
#define USB_DEVICE_ID_SAITEK_RUMBLEPAD    0xff17

#define USB_VENDOR_ID_NEC           0x073e
#define USB_DEVICE_ID_NEC_USB_GAME_PAD    0x0301

#define USB_VENDOR_ID_CHIC          0x05fe
#define USB_DEVICE_ID_CHIC_GAMEPAD  0x0014

struct hid_blacklist {
      __u16 idVendor;
      __u16 idProduct;
      unsigned quirks;
} hid_blacklist[] = {

      { USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_6000, HID_QUIRK_IGNORE },
      { USB_VENDOR_ID_BERKSHIRE, USB_DEVICE_ID_BERKSHIRE_PCWD, HID_QUIRK_IGNORE },
      { USB_VENDOR_ID_ESSENTIAL_REALITY, USB_DEVICE_ID_ESSENTIAL_REALITY_P5, HID_QUIRK_IGNORE },
      { USB_VENDOR_ID_KBGEAR, USB_DEVICE_ID_KBGEAR_JAMSTUDIO, HID_QUIRK_IGNORE },
      { USB_VENDOR_ID_GRIFFIN, USB_DEVICE_ID_POWERMATE, HID_QUIRK_IGNORE },
      { USB_VENDOR_ID_GRIFFIN, USB_DEVICE_ID_SOUNDKNOB, HID_QUIRK_IGNORE },
      { USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS, HID_QUIRK_IGNORE },
      { USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1, HID_QUIRK_IGNORE },

      { USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100, HID_QUIRK_IGNORE },
      { USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 100, HID_QUIRK_IGNORE },
      { USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 200, HID_QUIRK_IGNORE },
      { USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 300, HID_QUIRK_IGNORE },
      { USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 400, HID_QUIRK_IGNORE },
      { USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 500, HID_QUIRK_IGNORE },

      { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_PENPARTNER, HID_QUIRK_IGNORE },
      { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_GRAPHIRE, HID_QUIRK_IGNORE },
      { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_GRAPHIRE + 1, HID_QUIRK_IGNORE },
      { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_GRAPHIRE + 2, HID_QUIRK_IGNORE },
      { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_GRAPHIRE + 3, HID_QUIRK_IGNORE },
      { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_GRAPHIRE + 4, HID_QUIRK_IGNORE },
      { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS, HID_QUIRK_IGNORE },
      { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS + 1, HID_QUIRK_IGNORE },
      { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS + 2, HID_QUIRK_IGNORE },
      { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS + 3, HID_QUIRK_IGNORE },
      { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS + 4, HID_QUIRK_IGNORE },
      { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_PL, HID_QUIRK_IGNORE },
      { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_PL + 1, HID_QUIRK_IGNORE },
      { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_PL + 2, HID_QUIRK_IGNORE },
      { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_PL + 3, HID_QUIRK_IGNORE },
      { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_PL + 4, HID_QUIRK_IGNORE },
      { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_PL + 5, HID_QUIRK_IGNORE },
      { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS2 + 1, HID_QUIRK_IGNORE },
      { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS2 + 2, HID_QUIRK_IGNORE },
      { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS2 + 3, HID_QUIRK_IGNORE },
      { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS2 + 4, HID_QUIRK_IGNORE },
      { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS2 + 5, HID_QUIRK_IGNORE },
      { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS2 + 7, HID_QUIRK_IGNORE },
      { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_VOLITO, HID_QUIRK_IGNORE },
      { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_PTU, HID_QUIRK_IGNORE },
      { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS3, HID_QUIRK_IGNORE },
      { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS3 + 1, HID_QUIRK_IGNORE },
      { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS3 + 2, HID_QUIRK_IGNORE },

      { USB_VENDOR_ID_ATEN, USB_DEVICE_ID_ATEN_UC100KM, HID_QUIRK_NOGET },
      { USB_VENDOR_ID_ATEN, USB_DEVICE_ID_ATEN_CS124U, HID_QUIRK_NOGET },
      { USB_VENDOR_ID_ATEN, USB_DEVICE_ID_ATEN_2PORTKVM, HID_QUIRK_NOGET },
      { USB_VENDOR_ID_ATEN, USB_DEVICE_ID_ATEN_4PORTKVM, HID_QUIRK_NOGET },
      { USB_VENDOR_ID_ATEN, USB_DEVICE_ID_ATEN_4PORTKVMC, HID_QUIRK_NOGET },
      { USB_VENDOR_ID_TANGTOP, USB_DEVICE_ID_TANGTOP_USBPS2, HID_QUIRK_NOGET },

      { USB_VENDOR_ID_A4TECH, USB_DEVICE_ID_A4TECH_WCP32PU, HID_QUIRK_2WHEEL_MOUSE_HACK_BACK },
      { USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_MOUSE, HID_QUIRK_2WHEEL_MOUSE_HACK_EXTRA },

      { USB_VENDOR_ID_ALPS, USB_DEVICE_ID_IBM_GAMEPAD, HID_QUIRK_BADPAD },
      { USB_VENDOR_ID_CHIC, USB_DEVICE_ID_CHIC_GAMEPAD, HID_QUIRK_BADPAD },
      { USB_VENDOR_ID_HAPP, USB_DEVICE_ID_UGCI_DRIVING, HID_QUIRK_BADPAD | HID_QUIRK_MULTI_INPUT },
      { USB_VENDOR_ID_HAPP, USB_DEVICE_ID_UGCI_FLYING, HID_QUIRK_BADPAD | HID_QUIRK_MULTI_INPUT },
      { USB_VENDOR_ID_HAPP, USB_DEVICE_ID_UGCI_FIGHTING, HID_QUIRK_BADPAD | HID_QUIRK_MULTI_INPUT },
      { USB_VENDOR_ID_NEC, USB_DEVICE_ID_NEC_USB_GAME_PAD, HID_QUIRK_BADPAD },
      { USB_VENDOR_ID_SAITEK, USB_DEVICE_ID_SAITEK_RUMBLEPAD, HID_QUIRK_BADPAD },
      { USB_VENDOR_ID_TOPMAX, USB_DEVICE_ID_TOPMAX_COBRAPAD, HID_QUIRK_BADPAD },

      { 0, 0 }
};

static int hid_alloc_buffers(struct usb_device *dev, struct hid_device *hid)
{
      if (!(hid->inbuf = usb_buffer_alloc(dev, HID_BUFFER_SIZE, SLAB_ATOMIC, &hid->inbuf_dma)))
            return -1;
      if (!(hid->outbuf = usb_buffer_alloc(dev, HID_BUFFER_SIZE, SLAB_ATOMIC, &hid->outbuf_dma)))
            return -1;
      if (!(hid->cr = usb_buffer_alloc(dev, sizeof(*(hid->cr)), SLAB_ATOMIC, &hid->cr_dma)))
            return -1;
      if (!(hid->ctrlbuf = usb_buffer_alloc(dev, HID_BUFFER_SIZE, SLAB_ATOMIC, &hid->ctrlbuf_dma)))
            return -1;

      return 0;
}

static void hid_free_buffers(struct usb_device *dev, struct hid_device *hid)
{
      if (hid->inbuf)
            usb_buffer_free(dev, HID_BUFFER_SIZE, hid->inbuf, hid->inbuf_dma);
      if (hid->outbuf)
            usb_buffer_free(dev, HID_BUFFER_SIZE, hid->outbuf, hid->outbuf_dma);
      if (hid->cr)
            usb_buffer_free(dev, sizeof(*(hid->cr)), hid->cr, hid->cr_dma);
      if (hid->ctrlbuf)
            usb_buffer_free(dev, HID_BUFFER_SIZE, hid->ctrlbuf, hid->ctrlbuf_dma);
}

static struct hid_device *usb_hid_configure(struct usb_interface *intf)
{
      struct usb_host_interface *interface = intf->cur_altsetting;
      struct usb_device *dev = interface_to_usbdev (intf);
      struct hid_descriptor *hdesc;
      struct hid_device *hid;
      unsigned quirks = 0, rsize = 0;
      char *buf, *rdesc;
      int n;

      for (n = 0; hid_blacklist[n].idVendor; n++)
            if ((hid_blacklist[n].idVendor == dev->descriptor.idVendor) &&
                  (hid_blacklist[n].idProduct == dev->descriptor.idProduct))
                        quirks = hid_blacklist[n].quirks;

      if (quirks & HID_QUIRK_IGNORE)
            return NULL;

      if (usb_get_extra_descriptor(interface, HID_DT_HID, &hdesc) && ((!interface->desc.bNumEndpoints) ||
            usb_get_extra_descriptor(&interface->endpoint[0], HID_DT_HID, &hdesc))) {
                  dbg("class descriptor not present\n");
                  return NULL;
      }

      for (n = 0; n < hdesc->bNumDescriptors; n++)
            if (hdesc->desc[n].bDescriptorType == HID_DT_REPORT)
                  rsize = le16_to_cpu(hdesc->desc[n].wDescriptorLength);

      if (!rsize || rsize > HID_MAX_DESCRIPTOR_SIZE) {
            dbg("weird size of report descriptor (%u)", rsize);
            return NULL;
      }

      if (!(rdesc = kmalloc(rsize, GFP_KERNEL))) {
            dbg("couldn't allocate rdesc memory");
            return NULL;
      }

      if ((n = hid_get_class_descriptor(dev, interface->desc.bInterfaceNumber, HID_DT_REPORT, rdesc, rsize)) < 0) {
            dbg("reading report descriptor failed");
            kfree(rdesc);
            return NULL;
      }

#ifdef DEBUG_DATA
      printk(KERN_DEBUG __FILE__ ": report descriptor (size %u, read %d) = ", rsize, n);
      for (n = 0; n < rsize; n++)
            printk(" %02x", (unsigned char) rdesc[n]);
      printk("\n");
#endif

      if (!(hid = hid_parse_report(rdesc, rsize))) {
            dbg("parsing report descriptor failed");
            kfree(rdesc);
            return NULL;
      }

      kfree(rdesc);
      hid->quirks = quirks;

      if (hid_alloc_buffers(dev, hid)) {
            hid_free_buffers(dev, hid);
            goto fail;
      }

      for (n = 0; n < interface->desc.bNumEndpoints; n++) {

            struct usb_endpoint_descriptor *endpoint;
            int pipe;

            endpoint = &interface->endpoint[n].desc;
            if ((endpoint->bmAttributes & 3) != 3)          /* Not an interrupt endpoint */
                  continue;

            if (endpoint->bEndpointAddress & USB_DIR_IN) {
                  int len;

                  if (hid->urbin)
                        continue;
                  if (!(hid->urbin = usb_alloc_urb(0, GFP_KERNEL)))
                        goto fail;
                  pipe = usb_rcvintpipe(dev, endpoint->bEndpointAddress);
                  len = usb_maxpacket(dev, pipe, 0);
                  if (len > HID_BUFFER_SIZE)
                        len = HID_BUFFER_SIZE;
                  usb_fill_int_urb(hid->urbin, dev, pipe, hid->inbuf, len,
                               hid_irq_in, hid, endpoint->bInterval);
                  hid->urbin->transfer_dma = hid->inbuf_dma;
                  hid->urbin->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
            } else {
                  if (hid->urbout)
                        continue;
                  if (!(hid->urbout = usb_alloc_urb(0, GFP_KERNEL)))
                        goto fail;
                  pipe = usb_sndintpipe(dev, endpoint->bEndpointAddress);
                  usb_fill_int_urb(hid->urbout, dev, pipe, hid->outbuf, 0,
                                hid_irq_out, hid, 1);
                  hid->urbout->transfer_dma = hid->outbuf_dma;
                  hid->urbout->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
            }
      }

      if (!hid->urbin) {
            err("couldn't find an input interrupt endpoint");
            goto fail;
      }

      init_waitqueue_head(&hid->wait);
      
      hid->outlock = SPIN_LOCK_UNLOCKED;
      hid->ctrllock = SPIN_LOCK_UNLOCKED;

      hid->version = le16_to_cpu(hdesc->bcdHID);
      hid->country = hdesc->bCountryCode;
      hid->dev = dev;
      hid->intf = intf;
      hid->ifnum = interface->desc.bInterfaceNumber;

      hid->name[0] = 0;

      if (!(buf = kmalloc(64, GFP_KERNEL)))
            goto fail;

      if (usb_string(dev, dev->descriptor.iManufacturer, buf, 64) > 0) {
            strcat(hid->name, buf);
            if (usb_string(dev, dev->descriptor.iProduct, buf, 64) > 0)
                  snprintf(hid->name, 64, "%s %s", hid->name, buf);
      } else if (usb_string(dev, dev->descriptor.iProduct, buf, 128) > 0) {
                  snprintf(hid->name, 128, "%s", buf);
      } else
            snprintf(hid->name, 128, "%04x:%04x", dev->descriptor.idVendor, dev->descriptor.idProduct);

      usb_make_path(dev, buf, 64);
      snprintf(hid->phys, 64, "%s/input%d", buf,
                  intf->altsetting[0].desc.bInterfaceNumber);

      if (usb_string(dev, dev->descriptor.iSerialNumber, hid->uniq, 64) <= 0)
            hid->uniq[0] = 0;

      kfree(buf);

      hid->urbctrl = usb_alloc_urb(0, GFP_KERNEL);
      if (!hid->urbctrl)
            goto fail;
      usb_fill_control_urb(hid->urbctrl, dev, 0, (void *) hid->cr,
                       hid->ctrlbuf, 1, hid_ctrl, hid);
      hid->urbctrl->setup_dma = hid->cr_dma;
      hid->urbctrl->transfer_dma = hid->ctrlbuf_dma;
      hid->urbctrl->transfer_flags |= (URB_NO_TRANSFER_DMA_MAP
                        | URB_NO_SETUP_DMA_MAP);

      return hid;

fail:

      if (hid->urbin)
            usb_free_urb(hid->urbin);
      if (hid->urbout)
            usb_free_urb(hid->urbout);
      if (hid->urbctrl)
            usb_free_urb(hid->urbctrl);
      hid_free_buffers(dev, hid);
      hid_free_device(hid);

      return NULL;
}

static void hid_disconnect(struct usb_interface *intf)
{
      struct hid_device *hid = usb_get_intfdata (intf);

      if (!hid)
            return;

      usb_set_intfdata(intf, NULL);
      usb_unlink_urb(hid->urbin);
      usb_unlink_urb(hid->urbout);
      usb_unlink_urb(hid->urbctrl);

      if (hid->claimed & HID_CLAIMED_INPUT)
            hidinput_disconnect(hid);
      if (hid->claimed & HID_CLAIMED_HIDDEV)
            hiddev_disconnect(hid);

      usb_free_urb(hid->urbin);
      usb_free_urb(hid->urbctrl);
      if (hid->urbout)
            usb_free_urb(hid->urbout);

      hid_free_buffers(hid->dev, hid);
      hid_free_device(hid);
}

static int hid_probe (struct usb_interface *intf, const struct usb_device_id *id)
{
      struct hid_device *hid;
      char path[64];
      int i;
      char *c;

      dbg("HID probe called for ifnum %d",
                  intf->altsetting->desc.bInterfaceNumber);

      if (!(hid = usb_hid_configure(intf)))
            return -EIO;

      hid_init_reports(hid);
      hid_dump_device(hid);

      if (!hidinput_connect(hid))
            hid->claimed |= HID_CLAIMED_INPUT;
      if (!hiddev_connect(hid))
            hid->claimed |= HID_CLAIMED_HIDDEV;

      usb_set_intfdata(intf, hid);

      if (!hid->claimed) {
            printk ("HID device not claimed by input or hiddev\n");
            hid_disconnect(intf);
            return -EIO;
      }

      printk(KERN_INFO);

      if (hid->claimed & HID_CLAIMED_INPUT)
            printk("input");
      if (hid->claimed == (HID_CLAIMED_INPUT | HID_CLAIMED_HIDDEV))
            printk(",");
      if (hid->claimed & HID_CLAIMED_HIDDEV)
            printk("hiddev%d", hid->minor);

      c = "Device";
      for (i = 0; i < hid->maxcollection; i++) {
            if (hid->collection[i].type == HID_COLLECTION_APPLICATION &&
                (hid->collection[i].usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
                (hid->collection[i].usage & 0xffff) < ARRAY_SIZE(hid_types)) {
                  c = hid_types[hid->collection[i].usage & 0xffff];
                  break;
            }
      }

      usb_make_path(interface_to_usbdev(intf), path, 63);

      printk(": USB HID v%x.%02x %s [%s] on %s\n",
            hid->version >> 8, hid->version & 0xff, c, hid->name, path);

      return 0;
}

static struct usb_device_id hid_usb_ids [] = {
      { .match_flags = USB_DEVICE_ID_MATCH_INT_CLASS,
          .bInterfaceClass = USB_INTERFACE_CLASS_HID },
      { }                                 /* Terminating entry */
};

MODULE_DEVICE_TABLE (usb, hid_usb_ids);

static struct usb_driver hid_driver = {
      .owner =    THIS_MODULE,
      .name =           "hid",
      .probe =    hid_probe,
      .disconnect =     hid_disconnect,
      .id_table = hid_usb_ids,
};

static int __init hid_init(void)
{
      int retval;
      retval = hiddev_init();
      if (retval)
            goto hiddev_init_fail;
      retval = usb_register(&hid_driver);
      if (retval)
            goto usb_register_fail;
      info(DRIVER_VERSION ":" DRIVER_DESC);

      return 0;
usb_register_fail:
      hiddev_exit();
hiddev_init_fail:
      return retval;
}

static void __exit hid_exit(void)
{
      hiddev_exit();
      usb_deregister(&hid_driver);
}

module_init(hid_init);
module_exit(hid_exit);

MODULE_AUTHOR(DRIVER_AUTHOR);
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_LICENSE(DRIVER_LICENSE);

Generated by  Doxygen 1.6.0   Back to index